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OVERLAY TUNNEL IN A FABRIC SWITCH
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BACKGROUND

1. Field

The present disclosure relates to network management.
More specifically, the present disclosure relates to dynamic
insertion of services in a fabric switch.

2. Related Art

The exponential growth of the Internet has made it a popu-
lar delivery medium for a variety of applications running on
physical and virtual devices. Such applications have brought
with them an increasing demand for bandwidth. As a result,
equipment vendors race to build larger and faster switches
with versatile capabilities, such as awareness of virtual
machine migration, to move more traffic efficiently. However,
the size of a switch cannot grow infinitely. It is limited by
physical space, power consumption, and design complexity,
to name a few factors. Furthermore, switches with higher
capability are usually more complex and expensive. More
importantly, because an overly large and complex system
often does not provide economy of scale, simply increasing
the size and capability of a switch may prove economically
unviable due to the increased per-port cost.

Aflexible way to improve the scalability ofa switch system
is to build a fabric switch. A fabric switch is a collection of
individual member switches. These member switches form a
single, logical switch that can have an arbitrary number of
ports and an arbitrary topology. As demands grow, customers
can adopt a “pay as you grow” approach to scale up the
capacity of the fabric switch.

Meanwhile, layer-2 (e.g., Ethernet) switching technologies
continue to evolve. More routing-like functionalities, which
have traditionally been the characteristics of layer-3 (e.g.,
Internet Protocol or IP) networks, are migrating into layer-2.
Notably, the recent development of the Transparent Intercon-
nection of Lots of Links (TRILL) protocol allows Ethernet
switches to function more like routing devices. TRILL over-
comes the inherent inefficiency of the conventional spanning
tree protocol, which forces layer-2 switches to be coupled in
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2

a logical spanning-tree topology to avoid looping. TRILL
allows routing bridges (RBridges) to be coupled in an arbi-
trary topology without the risk of looping by implementing
routing functions in switches and including a hop count in the
TRILL header.

As Internet traffic is becoming more diverse, virtual com-
puting in a network is becoming progressively more impor-
tant as a value proposition for network architects. In addition,
the evolution of virtual computing has placed additional
requirements on the network. For example, as the locations of
virtual servers become more mobile and dynamic, it is often
desirable that the network infrastructure can provide network
overlay tunnels to assist the location changes of the virtual
servers.

While a fabric switch brings many desirable features to a
network, some issues remain unsolved in facilitating network
overlay tunnels to support virtual machine migration.

SUMMARY

One embodiment of the present invention provides a
switch. The switch includes a tunnel management module, a
packet processor, and a forwarding module. The tunnel man-
agement module operates the switch as a tunnel gateway
capable of terminating an overlay tunnel. During operation,
the packet processor, which is coupled to the tunnel manage-
ment module, identifies in a data packet a virtual Internet
Protocol (IP) address associated with a virtual tunnel gate-
way. This virtual tunnel gateway is associated with the switch
and the data packet is associated with the overlay tunnel. The
forwarding module determines an output port for an inner
packet in the data packet based on a destination address of the
inner packet.

In a variation on this embodiment, a hypervisor controlling
one or more virtual machines initiates the overlay tunnel by
encapsulating the inner packet.

In a variation on this embodiment, the packet processor
also identifies in the data packet a virtual media access control
(MAC) address mapped to the virtual IP address.

In a variation on this embodiment, the switch also includes
a device management module which operates in conjunction
with the packet processor and generates for a hypervisor a
configuration message comprising the virtual IP address as a
tunnel gateway address.

In a further variation, the virtual IP address in the configu-
ration message also corresponds to a default gateway router.

In a variation on this embodiment, the virtual IP address is
further associated with a remote switch. This remote switch
also operates as a tunnel gateway and is associated with the
virtual tunnel gateway.

In a variation on this embodiment, the data packet is encap-
sulated based on the Transparent Interconnection of Lots of
Links (TRILL) protocol. Under such a scenario, the packet
processor also identifies a virtual routing bridge (RBridge)
identifier, which is associated with the switch, in the data
packet.

In a variation on this embodiment, the switch also includes
a fabric switch management module which maintains a mem-
bership in a fabric switch. Such a fabric switch accommo-
dates a plurality of switches and operates as a single logical
switch.

In a further variation, the packet processor identifies the
inner packet to be a broadcast, unknown unicast, or multicast
packet. In response, the tunnel management module selects a
multicast tree in the fabric switch to distribute the inner
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packet based on one or more of: multicast group membership,
virtual local area network (VLAN) membership, and network
load.

In a variation on this embodiment, the tunnel management
module operates in conjunction with the packet processor to
learn a MAC address of a virtual machine via a tunnel initi-
ated by a first hypervisor associated with the virtual machine.

In a further variation, the tunnel management module oper-
ates in conjunction with the packet processor to construct a
message for a second hypervisor comprising an IP address of
the first hypervisor in response to receiving a data frame with
unknown destination from a virtual machine associated with
the second hypervisor.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1A illustrates an exemplary fabric switch with a vir-
tual tunnel gateway, in accordance with an embodiment of the
present invention.

FIG. 1B illustrates a virtual tunnel gateway being associ-
ated with a respective member switch of a fabric switch in
conjunction with the example in FIG. 1A, in accordance with
an embodiment of the present invention.

FIG. 2A illustrates an exemplary configuration of a fabric
switch with a virtual tunnel gateway, in accordance with an
embodiment of the present invention.

FIG. 2B illustrates exemplary multi-switch trunks cou-
pling a plurality of member switches in a fabric switch, in
accordance with an embodiment of the present invention.

FIG. 3A presents a flowchart illustrating the process of a
member switch in a fabric switch facilitating dynamic con-
figuration of a hypervisor discovered via an edge port, in
accordance with an embodiment of the present invention.

FIG. 3B presents a flowchart illustrating the process of a
member switch in a fabric switch facilitating dynamic con-
figuration of a hypervisor discovered via an inter-switch port,
in accordance with an embodiment of the present invention.

FIG. 4A presents a flowchart illustrating the process of a
member switch of a fabric switch forwarding a frame received
via an edge port, in accordance with an embodiment of the
present invention.

FIG. 4B presents a flowchart illustrating the process of a
member switch of a fabric switch forwarding a frame received
via an inter-switch port, in accordance with an embodiment of
the present invention.

FIG. 5 illustrates an exemplary processing of broadcast,
unknown unicast, and multicast traffic in a fabric switch with
a virtual tunnel gateway, in accordance with an embodiment
of the present invention.

FIG. 6 presents a flowchart illustrating the process of a
member tunnel gateway in a fabric switch processing broad-
cast, unknown unicast, and multicast traffic, in accordance
with an embodiment of the present invention.

FIG. 7 illustrates an exemplary member switch associated
with a virtual member tunnel gateway in a fabric switch, in
accordance with an embodiment of the present invention.

In the figures, like reference numerals refer to the same
figure elements.

DETAILED DESCRIPTION

The following description is presented to enable any per-
son skilled in the art to make and use the invention, and is
provided in the context of a particular application and its
requirements. Various modifications to the disclosed embodi-
ments will be readily apparent to those skilled in the art, and
the general principles defined herein may be applied to other
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embodiments and applications without departing from the
spirit and scope of the present invention. Thus, the present
invention is not limited to the embodiments shown, but is to
be accorded the widest scope consistent with the claims.
Overview

In embodiments of the present invention, the problem of
facilitating overlay tunneling in a fabric switch is solved by
operating one or more member switches of the fabric switch
as tunnel gateways (which can be referred to as member
tunnel gateways) virtualized as one virtual tunnel gateway. To
achieve high utilization of network devices (e.g., servers and
switches), a hypervisor often requires communication to
physical and virtual devices which are external to its VLAN
and cannot establish a tunnel with the hypervisor. For
example, a default router of a network may support a different
tunneling technology or may not support tunneling. A tunnel
gateway allows the hypervisor to communicate beyond its
VLAN boundaries without requiring any tunnel support from
the desired destination. Whenever a hypervisor requires com-
munication beyond its VLAN boundaries, the hypervisor ini-
tiates and establishes an overlay tunnel with the tunnel gate-
way, which in turn communicates with the desired
destination.

Because a large number of hypervisors can be associated
with a single network, the tunnel gateway of the network can
become a bottleneck. To reduce the bottleneck, the network
can include multiple tunnel gateways. Consequently, a
respective hypervisor requires configurations to establish
association with a tunnel gateway. For example, if the net-
work has three tunnel gateways, a respective hypervisor is
configured to associate with one of the three tunnel gateways.
Furthermore, if the number of hypervisors increases, the
existing tunnel gateways can again become a bottleneck.
When an additional tunnel gateway is added to the network to
reduce the bottleneck, the hypervisors require reconfigura-
tions. Similarly, when a tunnel gateway fails, the hypervisors
associated with the failed tunnel gateway need to be reas-
signed to the existing tunnel gateways. Such configurations
and reconfigurations can be tedious, repetitious, and error-
prone.

To solve this problem, the member switches, which are
member tunnel gateways in a fabric switch, present the entire
fabric switch as one single logical tunnel gateway to the local
hypervisors. The member tunnel gateways are virtualized as a
virtual member switch and a virtual member tunnel gateway.
Other member switches, which are not member tunnel gate-
ways, consider the virtual gateway switch as another member
switch coupled to the member tunnel gateways. At the same
time, the local hypervisors consider the virtual member tun-
nel gateway as a local tunnel gateway. The virtual member
tunnel gateway is associated with a virtual Internet Protocol
(IP) address and a virtual Media Access Control (MAC)
address. A respective member tunnel gateway considers these
virtual addresses as local addresses.

A respective hypervisor coupled to the fabric switch is
dynamically configured to consider the virtual member tun-
nel gateway as the tunnel gateway for the hypervisor. This
allows the whole fabric switch to act as a distributed tunnel
gateway. As a result, the hypervisor can establish an overlay
tunnel with any of the member tunnel gateways in the fabric
switch associated with the virtual member tunnel gateway;
and a member tunnel gateway can be dynamically added to or
removed from the fabric switch without reconfiguring the
local hypervisors. In this way, the fabric switch with a virtual
tunnel gateway supports a large number of tunnels in a scal-
able way.
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In some embodiments, the fabric switch is an Ethernet
fabric switch. In an Ethernet fabric switch, any number of
switches coupled in an arbitrary topology may logically oper-
ate as a single switch. Any new switch may join or leave the
fabric switch in “plug-and-play” mode without any manual
configuration. A fabric switch appears as a single logical
switch to an external device. In some further embodiments,
the fabric switch is a Transparent Interconnection of Lots of
Links (TRILL) network and a respective member switch of
the fabric switch is a TRILL routing bridge (RBridge).

Although the present disclosure is presented using
examples based on the TRILL protocol, embodiments of the
present invention are not limited to networks defined using
TRILL, or a particular Open System Interconnection Refer-
ence Model (OSI reference model) layer. For example,
embodiments of the present invention can also be applied to a
multi-protocol label switching (MPLS) network. In this dis-
closure, the term “fabric switch” is used in a generic sense,
and can refer to a network operating in any networking layer,
sub-layer, or a combination of networking layers.

The term “external device” can refer to a device coupled to
a fabric switch. An external device can be a host, a server, a
conventional layer-2 switch, a layer-3 router, or any other
type of device. Additionally, an external device can be
coupled to other switches or hosts further away from a net-
work. An external device can also be an aggregation point for
a number of network devices to enter the network. The terms
“device” and “machine” are used interchangeably.

The term “hypervisor” is used in a generic sense, and can
refer to any virtual machine manager. Any software, firm-
ware, or hardware that creates and runs virtual machines can
be a “hypervisor.” The term “virtual machine” also used in a
generic sense and can refer to software implementation of a
machine or device. Any virtual device which can execute a
software program similar to a physical device can be a “vir-
tual machine.” A host external device on which a hypervisor
runs one or more virtual machines can be referred to as a “host
machine.”

The term “tunnel” refers to a data communication where
one or more networking protocols are encapsulated using
another networking protocol. Although the present disclosure
is presented using examples based on a layer-3 encapsulation
of a layer-2 protocol, “tunnel” should not be interpreted as
limiting embodiments of the present invention to layer-2 and
layer-3 protocols. A “tunnel” can be established for any net-
working layer, sub-layer, or a combination of networking
layers.

The term “frame” refers to a group of bits that can be
transported together across a network. “Frame” should not be
interpreted as limiting embodiments of the present invention
to layer-2 networks. “Frame” can be replaced by other termi-
nologies referring to a group of bits, such as “packet,” “cell,”
or “datagram.”

The term “switch” is used in a generic sense, and it can
refer to any standalone or fabric switch operating in any
network layer. “Switch” should not be interpreted as limiting
embodiments of the present invention to layer-2 networks.
Any device that can forward traffic to an external device or
another switch can be referred to as a “switch.” Examples of
a “switch” include, but are not limited to, a layer-2 switch, a
layer-3 router, a TRILL RBridge, or a fabric switch compris-
ing a plurality of similar or heterogeneous smaller physical
switches.

The term “RBridge” refers to routing bridges, which are
bridges implementing the TRILL protocol as described in
Internet Engineering Task Force (IETF) Request for Com-
ments (RFC) “Routing Bridges (RBridges): Base Protocol
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Specification,” available at http://tools.ietf.org/htm1/rfc6325,
which is incorporated by reference herein. Embodiments of
the present invention are not limited to application among
RBridges. Other types of switches, routers, and forwarders
can also be used.

The term “edge port” refers to a port in a fabric switch
which exchanges data frames with an external device outside
of the fabric switch. The term “inter-switch port” refers to a
port which couples a member switch of a fabric switch with
another member switch and is used for exchanging data
frames between the member switches.

The term “switch identifier” refers to a group of bits that
can be used to identity a switch. If the switch is an RBridge,
the switch identifier can be an “RBridge identifier.” The
TRILL standard uses “RBridge ID” to denote a 48-bit Inter-
mediate-System-to-Intermediate-System (IS-IS) ID assigned
to an RBridge, and “RBridge nickname” to denote a 16-bit
value that serves as an abbreviation for the “RBridge ID.” In
this disclosure, “switch identifier” is used as a generic term, is
not limited to any bit format, and can refer to any format that
can identify a switch. The term “RBridge identifier” is used in
a generic sense, is not limited to any bit format, and can refer
to “RBridge ID,” “RBridge nickname,” or any other format
that can identify an RBridge.

The term “fabric switch” refers to a number of intercon-
nected physical switches which form a single, scalable logical
switch. In a fabric switch, any number of switches can be
connected in an arbitrary topology, and the entire group of
switches functions together as one single, logical switch. This
feature makes it possible to use many smaller, inexpensive
switches to construct a large fabric switch, which can be
viewed as a single logical switch externally.

Network Architecture

FIG. 1A illustrates an exemplary fabric switch with a vir-
tual tunnel gateway, in accordance with an embodiment of the
present invention. As illustrated in FIG. 1A, a fabric switch
100 includes member switches 101, 102, 103, 104, and 105.
Switch 101 is coupled to service appliance 132 and a layer-3
router 134; and switch 102 is coupled to layer-3 router 134
and a physical switch 136. Appliance 132 can provide a
service to fabric switch 100, such as firewall protection, load
balancing, and instruction detection. Member switches in
fabric switch 100 send frames outside of fabric switch 100 via
router 134. Switch 136 can be coupled to other devices, such
as a high-performance database. Member switches in fabric
switch 100 use edge ports to communicate to external devices
and inter-switch ports to communicate to other member
switches. For example, switch 102 is coupled to external
devices, such as router 134 and switch 136, via edge ports and
to switches 101, 103, 104, and 105 via inter-switch ports.

Switches 101 and 102 also operate as tunnel gateways (i.e.,
member tunnel gateways 101 and 102) in fabric switch 100.
Switches 101 and 102 are virtualized as a virtual gateway
switch 150. Switches 103, 104, and 105 consider virtual
gateway switch 150 as another member switch reachable via
switches 101 and 102. Virtual gateway switch 150 is also
virtualized as a virtual member tunnel gateway 150 to the
hypervisors coupled to fabric switch 100. Hence, the terms
“member switch” and “member tunnel gateway” are used
interchangeably for virtual gateway switch 150, and associ-
ated member switches 101 and 102. Virtual tunnel gateway
150 is associated with a virtual IP address and a virtual MAC
address. Member tunnel gateways 101 and 102 are associated
with these virtual addresses in conjunction with each other.
Consequently, member tunnel gateways 101 and 102 con-
sider these virtual addresses as local addresses. In some
embodiments, fabric switch 100 is a TRILL network;
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switches 101, 102, 103, 104, and 105 are RBridges; and data
frames transmitted and received via inter-switch ports are
encapsulated in TRILL headers. Under such a scenario, vir-
tual member tunnel gateway 150 can be a virtual RBridge
with a virtual RBridge identifier. Switch virtualization in a
fabric switch and its associated operations, such as data frame
forwarding, are specified in U.S. Patent Publication No. 2010/
0246388, titled “Redundant Host Connection in a Routed
Network,” the disclosure of which is incorporated herein in its
entirety.

Host machines 112 and 114 are coupled to switches 103
and 105, respectively. During operation, switch 103 discovers
the hypervisor of host machine 112. Switch 103 then sends a
configuration message to the hypervisor with the virtual IP
address, and optionally, the virtual MAC address associated
with virtual member tunnel gateway 150. In some embodi-
ments, switch 103 forwards the hypervisor information
toward virtual gateway switch 150. Switch 101 or 102
receives the information and sends the configuration message
to the hypervisor via switch 103. Upon receiving the configu-
ration message, the hypervisor is dynamically configured
with the virtual IP address as the tunnel gateway address. In
the same way, the hypervisor in host machine 114 is also
configured with the virtual IP address as the tunnel gateway
address. This allows fabric switch 100 to act as a distributed
tunnel gateway represented by virtual member tunnel gate-
way 150.

Suppose that virtual machine 122 in host machine 112
initiates a data communication which crosses its VLAN
boundary and sends an associated data frame toward router
134. The hypervisor in host machine 112 initiates an overlay
tunnel for the frame by encapsulating the frame in a layer-3
packet with the virtual IP address as the destination IP
address. Examples of such a tunnel include, but are not lim-
ited to, Virtual Extensible Local Area Network (VXLAN),
Generic Routing Encapsulation (GRE), and its variations,
such as Network Virtualization using GRE (NVGRE) and
openvSwitch GRE. The hypervisor in host machine 112 can
further encapsulate the packet in an Ethernet frame with the
virtual MAC address as the destination MAC address, and
forwards the frame toward virtual member tunnel gateway
150.

Upon receiving the frame, egress switch 103 identifies the
destination MAC address to be associated with virtual gate-
way switch 150. Switch 103 considers virtual gateway switch
150 to be another member switch and forwards the frame to
switch 101. Upon receiving the frame, switch 101 recognizes
the virtual IP and MAC addresses to be local addresses,
extracts the inner packet, and forwards the inner packet to
router 134 based on the forwarding information of the inner
packet. Similarly, if virtual machine 124 in host machine 114
sends a frame toward switch 136, the hypervisor in host
machine 114 tunnels the frame by encapsulating the frame in
a layer-3 packet with the virtual IP address as the destination
IP address. Switch 103 receives the frame, recognizes the
virtual IP and MAC addresses to be local addresses, extracts
the inner packet, and forwards the inner packet to switch 136
based on the forwarding information of the inner packet.

Suppose that virtual machine 122 requires migration from
host machine 112 to a remote location via router 134. The
hypervisor of host machine 112 tunnels the data associated
with the migration by encapsulating the data in an IP packet
with the virtual IP address of virtual member tunnel gateway
150 as the destination address. On the other hand, if virtual
machine 122 requires migration from host machine 112 to
host machine 114, the hypervisor of host machine 112 can
simply send the associated data to the hypervisor of host
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machine 114, as long as they are configured with the same
VLAN. If virtual tunnel gateway 150 also operates a default
router for the hypervisors in host machines 112 and 114, the
hypervisor ofhost machine 112 can tunnel the associated data
directly to the hypervisor of host machine 114 via default
router 150. Member tunnel gateways 101 and 102 can age out
the tunnels from the hypervisors of host machines 112 and
114 upon detecting inactivity from the tunnels. In some
embodiments, member tunnel gateways 101 and 102 main-
tain an activity bit for a respective tunnel to indicate activity
or inactivity over a period of time.

FIG. 1B illustrates a virtual tunnel gateway being associ-
ated with a respective member switch of a fabric switch in
conjunction with the example in FIG. 1A, in accordance with
an embodiment of the present invention. Because the entire
fabric switch 100 appears as a single tunnel gateway repre-
sented by virtual member tunnel gateway 150, another mem-
ber tunnel gateway can be dynamically added to fabric switch
100. In some embodiments, existing member switches can be
configured as member tunnel gateways as well. In the
example of FIG. 1B, switches 103, 104, and 105 are also
configured as member tunnel gateways. Switches 103, 104,
and 105 become associated with virtual gateway switch 150,
and establish association with the corresponding virtual IP
address and the virtual MAC address. The hypervisors of host
machines 112 and 114 simply continue to tunnel frames by
encapsulating the frames using the virtual IP address. Con-
sequently, when the hypervisor in host machine 112 tunnels
frames toward virtual member tunnel gateway 150, egress
switch 103 recognizes the virtual IP and MAC addresses and
local addresses, extracts the inner frame, and forwards the
frame to router 134 based on the forwarding information of
the inner frame.

Network Configurations

FIG. 2A illustrates an exemplary configuration of a fabric
switch with a virtual tunnel gateway, in accordance with an
embodiment of the present invention. In this example, a fabric
switch 200 includes switches 212, 214, and 216. Fabric
switch 200 also includes switches 202, 204, 222 and 224,
each with a number of edge ports which can be coupled to
external devices. For example, switches 202 and 204 are
coupled with host machines 250 and 260 via Ethernet edge
ports. Switches 222 and 224 are coupled to network 240,
which can be any local or wide area network, such as the
Internet. Host machine 250 includes virtual machines 254,
256, and 258, which are managed by hypervisor 252. Host
machine 260 includes virtual machines 264, 266, and 268,
which are managed by hypervisor 262. Virtual machines in
host machines 250 and 260 are logically coupled to virtual
switches 251 and 261, respectively, via their respective virtual
ports. For example, virtual machines 254 and 264 are coupled
to virtual switches 251 and 261, respectively, via virtual ports
253 and 263, respectively.

In some embodiments, switches in fabric switch 200 are
TRILL RBridges and in communication with each other
using TRILL protocol. These RBridges have TRILL-based
inter-switch ports for connection with other TRILL RBridges
in fabric switch 200. Although the physical switches within
fabric switch 200 are labeled as “TRILL RBridges,” they are
different from conventional TRILL RBridge in the sense that
they are controlled by the Fibre Channel (FC) switch fabric
control plane. In other words, the assignment of switch
addresses, link discovery and maintenance, topology conver-
gence, routing, and forwarding can be handled by the corre-
sponding FC protocols. Particularly, each TRILL RBridge’s
switch ID or nickname is mapped from the corresponding FC
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switch domain ID, which can be automatically assigned when
a switch joins fabric switch 200 (which is logically similar to
an FC switch fabric).

Note that TRILL is only used as a transport between the
switches within fabric switch 200. This is because TRILL can
readily accommodate native Ethernet frames. Also, the
TRILL standards provide a ready-to-use forwarding mecha-
nism that can be used in any routed network with arbitrary
topology (although the actual routing in fabric switch 200 is
done by the FC switch fabric protocols). Embodiments of the
present invention should be not limited to using only TRILL
as the transport. Other protocols (such as multi-protocol label
switching (MPLS) or Internet Protocol (IP)), either public or
proprietary, can also be used for the transport.

In the example in FIG. 2, RBridges 222 and 224 are also
member tunnel gateways. In some embodiments, a respective
member tunnel gateway is capable of processing layer-3 (e.g.,
1P) packets to facilitate layer-3 overlay tunnels over layer-2
and TRILL network. RBridges 222 and 224 are virtualized as
a virtual RBridge 230 (which corresponds to a virtual gate-
way switch) with virtual RBridge identifier 232. RBridges
222 and 224 are associated with virtual RBridge identifier
232. RBridges 202, 204, 212, 214, and 216 consider virtual
RBridge 230 as another member switch reachable via
RBridges 222 and 224. Virtual RBridge 230 is presented to
hypervisors 252 and 262 as virtual member tunnel gateway
230. Hence, the terms “RBridge” and “member tunnel gate-
way” are used interchangeably for virtual RBridge 230, and
associated RBridges 222 and 224. Virtual tunnel gateway 230
is associated with a virtual IP address 236 and a virtual MAC
address 234. Member tunnel gateways 222 and 224 are asso-
ciated with virtual IP address 236 and virtual MAC address
234. Consequently, member tunnel gateways 222 and 224
consider virtual IP address 236 and virtual MAC address 234
as local addresses.

During operation, RBridge 202 discovers hypervisor 252.
RBridge 202 then sends a configuration message to hypervi-
sor 252 comprising virtual IP address 236, and optionally,
virtual MAC address 234. If not provided, hypervisor 252 can
obtain virtual MAC address 234 by sending an Address Reso-
Iution Protocol (ARP) query with virtual IP address 236.
RBridge 222 or 224 can resolve the ARP query and send a
response comprising MAC address 234. Managing a virtual
1P address and a virtual MAC address in a fabric switch and its
associated operations, such as ARP query resolution, are
specified in U.S. patent application Ser. No. 13/312,903,
titled “Layer-3 Support in TRILL Networks,” the disclosure
of which is incorporated herein in its entirety. In some
embodiments, RBridge 202 forwards the hypervisor informa-
tion toward virtual RBridge 230, and, in response, RBridge
222 or 224 sends the configuration message to hypervisor 252
via switch 202.

Upon receiving the configuration message, hypervisor 252
configures virtual IP address 236 as the tunnel gateway
address, which can also be the default router IP address for
hypervisor 252. In some embodiments, RBridge 222 can use
Dynamic Host Configuration Protocol (DHCP) for providing
the configuration information. Similarly, upon receiving a
configuration message from RBridge 204, hypervisor 262
configures virtual IP address 236 as the tunnel gateway
address for hypervisor 262. Suppose that virtual machine 254
sends a frame toward network 240. Hypervisor 252, via vir-
tual switch 251, tunnels the frame by encapsulating the frame
in a layer-3 packet with virtual IP address 236 as the destina-
tion IP address. Hypervisor 252 further encapsulates the
packet in an Ethernet frame with virtual MAC address 234 as
the destination MAC address, and forwards the frame to
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RBridge 202. Upon receiving the frame, egress RBridge 202
identifies virtual MAC address 234 to be associated with
virtual RBridge 230 reachable via RBridges 222 and 224.
RBridge 202 then encapsulates the frame in a TRILL packet
with virtual RBridge identifier 232 as the egress RBridge
identifier and forwards the frame toward virtual RBridge 230.

The TRILL packet is received by one of intermediate
RBridges 212 and 214, and forwarded to RBridge 222 or 224
based on the TRILL routing in fabric switch 200. Suppose
that RBridge 222 receives the TRILL packet. RBridge 222
identifies virtual RBridge identifier 232 as the egress RBridge
identifier and recognizes virtual RBridge identifier 232 as a
local RBridge identifier. RBridge 222 removes the TRILL
encapsulation and extracts the layer-2 frame. RBridge 222
identifies virtual MAC address 234 as the destination MAC
address of the frame and recognizes virtual MAC address 234
to be a local MAC address. Because RBridge 222 has IP
processing capability, RBridge 222 then promotes the packet
in the frame to the upper layer (e.g., IP layer).

RBridge 222 identifies virtual IP address 232 as the desti-
nation IP address of the packet, recognizes virtual IP address
232 as a local IP address, and extracts the inner frame.
RBridge 222 thus removes the tunneling encapsulation of
hypervisor 252. RBridge 222 then forwards the inner frame to
network 240 based on the forwarding information of the inner
frame. In this way, the entire fabric switch 200 operates as a
tunnel gateway for hypervisor 252.

When RBridge 222 removes the tunneling encapsulation,
RBridge 222 learns the MAC address of virtual machine 254
from the inner frame. In some embodiments, RBridge 222
learns the MAC address of virtual machine 254 directly from
the tunnel encapsulated packet. RBridge 222 can also learn
other associated information, such as the MAC and IP
addresses of hypervisor 252, and outer and inner VL.ANs
associated with the frame. In some embodiments, RBridge
222 shares the learned information with other member tunnel
gateways in fabric switch 200, such as RBridge 224. RBridge
224 can consider the information received from RBridge 222
to be learned from a locally terminated tunnel.

In this way, RBridges 222 and 224 learn the MAC
addresses (and the associated information) of virtual
machines 256, 258, 264, 266, and 268 as well. In some
embodiments, RBridges 222 and 224 share the learned MAC
addresses with the rest of fabric switch 200. RBridges 222
and 224 can also share the learned associated information
with the rest of fabric switch 200 as well. Consequently,
whenever any member switch of fabric switch 200 learns a
MAC address, all other member switches learn the MAC
address as well. In some embodiments, switches 202 and 204
use internal control messages to share the learned MAC
addresses.

In some embodiments, all RBridges in fabric switch 200
operate as member tunnel gateways and are associated with
virtual RBridge 230. Under such a scenario, RBridge 202
removes tunneling encapsulation of hypervisor 252 and
extracts the internal frame. RBridge 202 recognizes network
240 to be reachable via RBridges 222 and 224. RBridge 202
then encapsulates the inner frame in a TRILL packet and
forwards the TRILL-encapsulated inner frame toward one of
RBridges 222 and 224. If hypervisor 252 is sending multiple
frames to network 240, RBridge 202 can use equal cost mul-
tiple paths (ECMP). Hence, multi-pathing can be achieved
when RBridges 202 and 204 choose to send TRILL-encap-
sulated data frames toward virtual RBridge 230 via RBridges
222 and 224.

FIG. 2B illustrates exemplary multi-switch trunks cou-
pling a plurality of member switches in a fabric switch, in
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accordance with an embodiment of the present invention. As
illustrated in FIG. 2B, RBridges 202 and 204 are configured
to operate in a special “trunked” mode for host machines 250
and 260, and hypervisors 252 and 262. Hypervisors 252 and
262 view RBridges 202 and 204 as a common virtual RBridge
270, with a corresponding virtual RBridge identifier 272.
Hypervisors 252 and 262 are considered to be logically
coupled to virtual RBridge 270 via logical links represented
by dotted lines. Virtual RBridge 270 is considered to be
logically coupled to both RBridges 202 and 204, optionally
with zero-cost links (also represented by dotted lines).

While forwarding data frames from hypervisors 252 and
262, RBridges 202 and 204 encapsulate the frame using the
TRILL protocol and assign virtual RBridge identifier 272 as
the ingress RBridge identifier. As a result, other RBridges in
fabric switch 200 learn that hypervisors 252 and 262, and
their corresponding virtual machines are reachable via virtual
RBridge 270. In the following description, RBridges which
participate in link aggregation are referred to as “partner
RBridges.” Since the two partner RBridges function as a
single logical RBridge, the MAC address reachability learned
by a respective RBridge is shared with the other partner
RBridge. For example, during normal operation, virtual
machine 254 may choose to send its outgoing data frames
only via the link to RBridge 202. As a result, only RBridge
202 would learn virtual machine 254’s MAC address. This
information is then shared by RBridge 202 with RBridge 204
via their respective inter-switch ports. In some embodiments,
RBridges 202 and 204 can advertise their respective connec-
tivity (optionally via zero-cost links) to virtual RBridge 270.
Hence, multi-pathing can be achieved when other RBridges
choose to send data frames to virtual RBridge 270 (which is
marked as the egress RBridge in the frames) via RBridges 202
and 204.

Note that virtual RBridge 270 is distinct from virtual
RBridge 230. Virtual RBridge 230 represents the member
tunnel gateways (i.e., the gateway switches) in fabric switch
200 as a single logical switch, and, in addition to virtual
RBridge identifier 232, is typically associated with virtual
MAC address 234 and virtual IP address 236. On the other
hand, virtual RBridge 270 represents a multi-switch trunk as
one logical connection via virtual RBridge 270, and is asso-
ciated with virtual RBridge identifier 272. Fabric switch 200
can have a plurality of virtual RBridges associated with dif-
ferent multi-switch trunks.

Dynamic Configuration

In the example in FIG. 2A, upon detecting hypervisor 252,
RBridge 222 dynamically provides configuration informa-
tion, such as virtual IP address 236, to hypervisor 252. Hyper-
visor 252 then configures virtual IP address 236 as the tunnel
gateway address, which can also be the default router IP
address for hypervisor 252. FIG. 3A presents a flowchart
illustrating the process of a member switch in a fabric switch
facilitating dynamic configuration of a hypervisor discovered
via an edge port, in accordance with an embodiment of the
present invention. Upon detecting a new hypervisor via an
edge port (operation 302), the switch checks whether the local
switch is a tunnel gateway (operation 304). In some embodi-
ments, the switch checks whether the local switch is associ-
ated with the virtual IP address to determine whether the local
switch is a tunnel gateway.

If the local switch is not a tunnel gateway (operation 304),
the switch identifies the virtual gateway switch (operation
312), which is also a virtual tunnel gateway. The switch
constructs a notification message comprising detected hyper-
visor information (operation 314) and encapsulates the noti-
fication message with a virtual identifier of the virtual gate-
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way switch as the egress switch identifier (operation 316). In
some embodiments, the notification message is encapsulated
in a TRILL packet and the virtual identifier is a virtual
RBridge identifier. The switch then sends the encapsulated
message toward the virtual gateway switch (operation 318).

If the local switch is a tunnel gateway, the switch is aware
of the virtual IP address and the virtual MAC address. The
switch then constructs a configuration message comprising
the virtual IP address as the tunnel gateway address for the
hypervisor (operation 322). This configuration message can
be a layer-2 notification/control message. In some embodi-
ments, the switch sends the configuration message using
DHCP. The configuration message can also indicate the vir-
tual IP address as the default router address for the hypervisor.
The switch, operationally, can include a mapping between the
virtual IP address and the corresponding virtual MAC address
in the configuration message (operation 324). If not included,
upon receiving the configuration message, the hypervisor can
obtain the virtual MAC address by sending an ARP query
with the virtual IP address. The switch then transmits the
configuration message to the edge port coupling the hypervi-
sor (operation 326).

FIG. 3B presents a flowchart illustrating the process of a
member switch in a fabric switch facilitating dynamic con-
figuration of a hypervisor discovered via an inter-switch port,
in accordance with an embodiment of the present invention.
Upon receiving a notification message from a remote ingress
member switch via an inter-switch port (operation 352), the
switch decapsulates the notification message (operation 354).
In some embodiments, the switch removes a TRILL and/or an
FC header to decapsulate the notification message. The
switch checks whether the notification message is for a new
hypervisor (operation 356). If not, the switch takes action
based on the information in the notification message (opera-
tion 358).

If the notification message is for a new hypervisor (opera-
tion 356), the switch constructs a configuration message com-
prising the virtual IP address as the tunnel gateway address
for the hypervisor (operation 362). The configuration mes-
sage can also indicate the virtual IP address as the default
router address for the hypervisor. The switch, optionally, can
include a mapping between the virtual IP address and the
corresponding virtual MAC address in the configuration mes-
sage (operation 364). The switch encapsulates the configura-
tion message with the remote member switch identifier as the
egress switch identifier (operation 366). In some embodi-
ments, the notification message is encapsulated in a TRILL
packet and the remote member switch identifier is an RBridge
identifier. The switch then sends the encapsulated message
toward the egress switch (operation 368).

Frame Forwarding

FIG. 4A presents a flowchart illustrating the process of a
member switch of a fabric switch forwarding a frame received
from a hypervisor via an edge port, in accordance with an
embodiment of the present invention. The switch receives a
data frame from the hypervisor via an edge port (operation
402) and obtains the destination MAC address of the received
frame (operation 404). If the frame has a tunnel encapsula-
tion, the destination MAC address is a virtual MAC address
associated with the virtual tunnel gateway. The switch checks
whether the MAC address is a local address (operation 406).
For example, if the switch is a member tunnel gateway, the
virtual MAC address is a local address. If the destination
MAC address is local, the switch promotes the frame to the
upper layer (e.g., layer-3) and extracts the internal encapsu-
lated packet (operation 408) and obtains the IP address of the
extracted packet (operation 412).



US 9,154,416 B2

13

The destination IP address of the extracted packet is a
virtual IP address associated with the virtual tunnel gateway.
The switch checks whether the destination IP address is a
local address (operation 414). For example, if the switch is a
member tunnel gateway, the virtual IP address is a local
address. If the IP address is local, the switch terminates the
tunnel encapsulation (i.e., decapsulates the frame) (operation
422). The switch extracts the inner frame (operation 424) and
forwards the inner frame based on the destination address of
the inner frame (operation 426), as described in conjunction
with FIG. 2A. If the IP address is not local (operation 414), the
switch is incorrectly configured. If the switch is configured
with the virtual MAC address, the switch should also be
configured with the corresponding virtual IP address. The
switch can optionally log the error associated with the virtual
1P address configuration (operation 416).

If the MAC address is not associated with the switch (op-
eration 406), the frame can be a regular layer-2 frame without
any tunnel encapsulation. The switch identifies the egress
switch associated with the destination MAC address (opera-
tion 428). Because a respective member switch in a fabric
switch shares the learned MAC addresses with other member
switches, the switch can be aware of the egress switch asso-
ciated with the MAC address. The switch encapsulates the
frame using an identifier of the egress switch (operation 430).
In some embodiments, the switch encapsulates the frame in a
TRILL packet and assigns an RBridge identifier associated
with the egress switch as the egress RBridge identifier. The
switch then forwards the frame to the egress switch (operation
432).

FIG. 4B presents a flowchart illustrating the process of a
member switch of a fabric switch forwarding a frame received
via an inter-switch port, in accordance with an embodiment of
the present invention. The switch receives an encapsulated
frame via an inter-switch port (operation 452) and checks
whether the egress switch identifier is a local identifier (op-
eration 454). This local identifier can be a virtual switch
identifier. If not, the switch forwards the frame toward the
egress switch based on the egress switch identifier (operation
468). If the identifier, which can be a virtual switch identifier,
is local, the switch decapsulates the frame (operation 456). In
some embodiments, the frame encapsulation is based on the
TRILL protocol and the egress switch identifier is a virtual
RBridge identifier.

If the frame has a tunnel encapsulation, the destination
MAC address of the decapsulated frame is a virtual MAC
address associated with the virtual tunnel gateway. The
switch checks whether the destination MAC address is a local
address (operation 458). For example, if the switch is a mem-
ber tunnel gateway, the virtual MAC address is a local
address. Ifthe destination MAC address is not local, the frame
is destined for a locally coupled external device, and the
switch forwards the decapsulated frame to the locally coupled
external device (operation 470). If the MAC address is local,
the switch promotes the frame to the upper layer and extracts
the internal encapsulated packet (operation 460), and obtains
the 1P address of the extracted packet (operation 462).

The destination IP address of the extracted packet is a
virtual IP address associated with the virtual tunnel gateway.
The switch checks whether the IP address is a local address
(operation 464). For example, if the switch is a member
tunnel gateway, the virtual IP address is a local address. If the
1P address is local, the switch terminates the tunnel encapsu-
lation (operation 472). The switch extracts the inner packet
(operation 474) and forwards the inner packet based on the
destination address of the inner packet (operation 476), as
described in conjunction with FIG. 2A. If the destination IP
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address is not local, the switch is incorrectly configured. If the
switch is configured with the virtual MAC address, the switch
should also be configured with the virtual IP address. The
switch can optionally log the error associated with the virtual
IP address configuration (operation 466).

Broadcast, Unknown Unicast, and Multicast Server

Typically broadcast, unknown unicast, or multicast traffic
(which can be referred to as “BUM” traffic) is distributed to
multiple recipients. For ease of deployment, hypervisors typi-
cally make multiple copies of the data frames belonging to
such traffic and individually unicast the data frames. This
often leads to inefficient usage of processing capability of the
hypervisors, especially in a large scale deployment. To solve
this problem, a fabric switch with a virtual tunnel gateway can
facilitate efficient distribution of such traffic. FIG. 5 illus-
trates an exemplary processing of broadcast, unknown uni-
cast, and multicast traffic in a fabric switch with a virtual
tunnel gateway, in accordance with an embodiment of the
present invention. As illustrated in FIG. 5, a fabric switch 500
includes member switches 501, 502, 503, 504, and 505.
Member switches in fabric switch 500 use edge ports to
communicate to external devices and inter-switch ports to
communicate to other member switches

A respective member switch in fabric switch 500 operates
as a member tunnel gateway. Switches 501, 502, 503, 504,
and 505 are virtualized as a virtual member tunnel gateway
510 to hypervisors 522, 532, 542, 552, 562, and 572 in host
machines 520, 530, 540, 550, 560, and 570, respectively.
Virtual tunnel gateway 510 is associated with a virtual IP
address and a virtual MAC address. All member tunnel gate-
ways consider these virtual addresses to be local addresses. In
some embodiments, fabric switch 500 is a TRILL network;
switches 501, 502, 503, 504, and 505 are RBridges; and data
frames transmitted and received via inter-switch ports are
encapsulated using the TRILL protocol. Under such a sce-
nario, virtual member tunnel gateway 510 can be a virtual
RBridge with a virtual RBridge identifier.

To facilitate multicast traffic distribution, fabric switch 500
maintains states for a respective multicast group associated
with hypervisors 522, 532, 542, 552, 562, and 572. Note that
such states are not proportional to the number of virtual
machines coupled to the fabric, but are dependent on the
number of multicast groups and VLLANSs associated with the
virtual machines. A respective member tunnel gateway in
fabric switch 500 is aware of the VLLAN and multicast group
association of a respective hypervisor. When a virtual
machine sends a join or leave request for a multicast group,
the corresponding hypervisor tunnels the request to the vir-
tual IP address of virtual tunnel gateway 510.

In some embodiments, a respective hypervisor implements
amulticast proxy server (e.g., an Internet Group Management
Protocol (IGMP) proxy server) and sends only the first join
and last leave requests associated with a specific multicast
group. For example, if virtual machines 554, 556, and 558
send join requests for a multicast group, hypervisor 552 sends
only the first join request toward virtual member tunnel gate-
way 510. On the other hand, if virtual machines 554 and 558
send leave requests for the multicast group, hypervisor 552
does not send out the leave requests because virtual machine
556 continues to receive traffic for the multicast group. How-
ever, when virtual machine 556 sends a leave request for the
multicast group, hypervisor 552 recognizes it to be the last
leave request and forwards the leave request toward virtual
member tunnel gateway 510.

During operation, virtual machines 524, 546, and 564
become members of a multicast group. When switch 503
receives a multicast frame from multicast router 580, switch
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503 forwards the frame via multicast tree 592. As a result, a
respective switch in fabric switch receives the frame.
Switches 502, 503, and 505 transmit the frame to correspond-
ing hypervisors 522, 542, and 562, while switches 501 and
504 discard the frame. In some embodiments, switch 503
identifies virtual machines 524, 546, and 564 to be the mem-
bers of the multicast group, and forwards the frame via mul-
ticast tree 596, which includes only switches 502, 503, and
505.

In some embodiments, fabric switch 500 operates as an
ARP server. When virtual machine 534 sends an ARP request,
instead of broadcasting (i.e., unicasting multiple copies),
hypervisor 532 tunnels a single copy of the request toward
virtual member tunnel gateway 510. Switch 505, which is
also a member tunnel gateway, receives and decapsulates the
request, as described in conjunction with FIGS. 2A and 2B.
Switch 505 then distributes the request in fabric switch 500
via multicast tree 592. Similarly, when virtual machine 574
sends an ARP request, hypervisor 572 tunnels a single copy of
the request toward virtual member tunnel gateway 510.
Switch 501 receives the request and distributes the frame in
fabric switch 500 via a different multicast tree 594. In this
way, the member tunnel gateways in fabric switch 500 load
balance across a plurality of multicast trees for broadcast,
unknown unicast, or multicast traffic. Selection of multicast
tree can further depend on VLAN memberships of the mem-
ber switches.

FIG. 6 presents a flowchart illustrating the process of a
member tunnel gateway in a fabric switch processing broad-
cast, unknown unicast, and multicast traffic, in accordance
with an embodiment of the present invention. The member
tunnel gateway receives a packet, which is part of a broadcast,
unknown unicast, or multicast traffic flow, from a hypervisor
(operation 602). This packet is encapsulated with the virtual
MAC and IP addresses of a virtual member tunnel gateway, as
described in conjunction with FIG. 5. The member tunnel
gateway terminates the tunnel encapsulation and extracts the
inner packet (operation 604), as described in conjunction with
FIGS. 4A and 4B. The member tunnel gateway checks
whether the packet is a multicast packet (operation 606). If so,
the member tunnel gateway selects a multicast tree in the
fabric switch based on the multicast group and the network
load (operation 608).

If the packet is not a multicast packet, the member tunnel
gateway checks whether the packet is a broadcast packet
(operation 610). For example, an ARP request from a hyper-
visor is a layer-2 broadcast frame encapsulated in a layer-3
packet. If the packet is not a broadcast packet, the member
tunnel gateway checks whether the packet is a frame of
unknown destination (operation 620). If the packet is not a
frame of unknown destination (i.e., the member tunnel gate-
way has already learned the destination MAC address), the
member tunnel gateway sends back a mapping of the desti-
nation MAC address and the corresponding IP address (which
can be a hypervisor IP address) (operation 622) and forwards
the frame based on the destination MAC address (operation
624). For example, the MAC address can be associated with
a remote member switch. The member tunnel gateway for-
wards the frame toward that remote member switch.

If the packet is a broadcast packet (operation 610) or the
packet is a frame with unknown destination (operation 620),
the member tunnel gateway selects a multicast tree compris-
ing all switches in the fabric switch based on network load
and VL AN configuration (operation 612). After selecting a
multicast tree (operations 608 and 612), the member tunnel
gateway forwards the frame via the selected multicast tree
(operation 614). In some embodiments, for multicast traffic of
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a multicast group, the member tunnel gateway selects a mul-
ticast tree only with the member switches coupling virtual
machines belonging to the multicast group (e.g., multicast
tree 596 in the example in FIG. 5).

Exemplary Switch

FIG. 7 illustrates an exemplary member switch associated
with a virtual member tunnel gateway in a fabric switch, in
accordance with an embodiment of the present invention. In
this example, a switch 700 includes a number of communi-
cation ports 702, a forwarding module 720, a tunnel manage-
ment module 730, a packet processor 710 coupled to tunnel
management module 730, and a storage 750. In some
embodiments, switch 700 may maintain a membership in a
fabric switch, wherein switch 700 also includes a fabric
switch management module 760. Fabric switch management
module 760 maintains a configuration database in storage 750
that maintains the configuration state of a respective switch
within the fabric switch. Fabric switch management module
760 maintains the state of the fabric switch, which is used to
join other switches. Under such a scenario, communication
ports 702 can include inter-switch communication channels
for communication within a fabric switch. This inter-switch
communication channel can be implemented via a regular
communication port and based on any open or proprietary
format.

Tunnel management module 730 operates switch 700 as a
tunnel gateway capable of terminating an overlay tunnel, as
described in conjunction with FIG. 2A. Tunnel management
module 730 also maintains an association between switch
700 and a virtual tunnel gateway. The virtual tunnel gateway
is associated with a virtual IP address. If switch 700 is a
member switch of a fabric switch, the virtual IP address can
also be associated with another member switch of the fabric
switch. This other member switch also operates as a tunnel
gateway and is associated with the virtual tunnel gateway. In
some embodiments, switch 700 is a TRILL RBridge. Under
such a scenario, the virtual tunnel gateway is also associated
with a virtual RBridge identifier.

In some embodiments, switch 700 also includes a device
management module 732, which operates in conjunction with
the packet processor. Upon detecting a new hypervisor,
device management module 732 generates a configuration
message comprising the virtual IP address as a tunnel gate-
way address for the hypervisor, as described in conjunction
with FIGS. 3A and 3B. In some embodiments, the virtual IP
address in the configuration message also corresponds to a
default gateway router. During operation, the hypervisor ini-
tiates an overlay tunnel with switch 700 by encapsulating
inner data packets in another layer-3 data packet.

Upon receiving the tunnel encapsulated data packet from
the hypervisor, packet processor 710 identifies in the data
packet the virtual IP address associated with the virtual tunnel
gateway and extracts the inner packet from the data packet. In
some embodiments, the packet is TRILL encapsulated and is
received via one of the communication ports 702 capable of
receiving TRILL packets. Packet processor 710 identifies the
virtual RBridge identifier in the TRILL header, as described
in conjunction with FIG. 2A. Forwarding module 720 then
determines an output port from one of the communication
ports 702 for the inner packet based on the destination address
of'the inner packet. To facilitate layer-2 switching, the encap-
sulated data packet can include a virtual MAC address
mapped to the virtual IP address. Packet processor 710 can
identify this virtual MAC address in the data packet as well.

Note that the above-mentioned modules can be imple-
mented in hardware as well as in software. In one embodi-
ment, these modules can be embodied in computer-execut-
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able instructions stored in a memory which is coupled to one
or more processors in switch 700. When executed, these
instructions cause the processor(s) to perform the aforemen-
tioned functions.

In summary, embodiments of the present invention provide
a switch and a method for facilitating overlay tunneling in a
fabric switch. In one embodiment, the switch includes a tun-
nel management module, a packet processor, and a forward-
ing module. The tunnel management module operates the
switch as a tunnel gateway capable of terminating an overlay
tunnel. During operation, the packet processor, which is
coupled to the tunnel management module, identifies ina data
packet a virtual IP address associated with a virtual tunnel
gateway. This virtual tunnel gateway is associated with the
switch and the data packet is associated with the overlay
tunnel. The forwarding module determines an output port for
an inner packet in the data packet based on a destination
address of the inner packet.

The methods and processes described herein can be
embodied as code and/or data, which can be stored in a
computer-readable non-transitory storage medium. When a
computer system reads and executes the code and/or data
stored on the computer-readable non-transitory storage
medium, the computer system performs the methods and
processes embodied as data structures and code and stored
within the medium.

The methods and processes described herein can be
executed by and/or included in hardware modules or appara-
tus. These modules or apparatus may include, but are not
limited to, an application-specific integrated circuit (ASIC)
chip, a field-programmable gate array (FPGA), adedicated or
shared processor that executes a particular software module
or a piece of code at a particular time, and/or other program-
mable-logic devices now known or later developed. When the
hardware modules or apparatus are activated, they perform
the methods and processes included within them.

The foregoing descriptions of embodiments of the present
invention have been presented only for purposes of illustra-
tion and description. They are not intended to be exhaustive or
to limit this disclosure. Accordingly, many modifications and
variations will be apparent to practitioners skilled in the art.
The scope of the present invention is defined by the appended
claims.

What is claimed is:
1. A switch, comprising:
a tunnel management module configurable to:
operate the switch as a tunnel gateway capable of termi-
nating an overlay tunnel;
learn a MAC address of a virtual machine via a tunnel
initiated by a first hypervisor associated with the vir-
tual machine; and
construct a message for a second hypervisor comprising
an Internet Protocol (IP) address of the first hypervi-
sor in response to receiving a data frame with
unknown destination from a virtual machine associ-
ated with the second hypervisor; and
apacket processor configurable to identify in a data packet
avirtual IP address associated with a virtual tunnel gate-
way, wherein the virtual tunnel gateway is associated
with the switch; and
a forwarding module configurable to determine an output
port for an inner packet in the data packet based on a
destination address of the inner packet.
2. The switch of claim 1, wherein the tunnel management
module is further configurable to identify a hypervisor con-
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trolling a virtual machine, wherein the virtual machine ini-
tiates the overlay tunnel by encapsulating the inner packet
using the virtual IP address.

3. The switch of claim 1, wherein the packet processor is
further configurable to identify in the data packet a virtual
media access control (MAC) address corresponding to the
virtual IP address.

4. The switch of claim 1, further comprising a device man-
agement module configurable to generate a configuration
message comprising the virtual IP address as a tunnel gate-
way address in response to detecting a hypervisor.

5. The switch of claim 4, wherein the virtual IP address in
the configuration message corresponds to a default gateway
router.

6. The switch of claim 1, wherein the virtual IP address is
further associated with a remote switch, wherein the remote
switch operates as a tunnel gateway and is associated with the
virtual tunnel gateway.

7. The switch of claim 1,

wherein the packet processor is further configurable to:

encapsulate the data packet in an encapsulation packet;
and

including a virtual switch identifier as an ingress switch
identifier of the encapsulation packet; and

wherein the switch identifier is associated with the switch.

8. The switch of claim 1, further comprising a switch
management module configurable to maintain a membership
in a network of interconnected switches.

9. The switch of claim 8, wherein the packet processor is
further configurable to identify the inner packet to be a broad-
cast, unknown unicast, or multicast packet; and

wherein the tunnel management module is further config-

urable to select a multicast tree in the network to distrib-
ute the inner packet based on one or more of: multicast
group membership, virtual local area network (VLAN)
membership, and network load.

10. The switch of claim 8, wherein the virtual tunnel gate-
way appears as a member switch of the network.

11. The switch of claim 1, wherein the packet processor is
further configurable to construct an Address Resolution Pro-
tocol (ARP) response message comprising a virtual MAC
address associated with the switch in response to an ARP
query message for the virtual IP address.

12. A computer-executable method, comprising:

operating a switch as a tunnel gateway capable of termi-

nating an overlay tunnel;

learning a MAC address of a virtual machine via a tunnel

initiated by a first hypervisor associated with the virtual
machine;
constructing a message for a second hypervisor comprising
an Internet Protocol (IP) address of the first hypervisor
in response to receiving a data frame with unknown
destination from a virtual machine associated with the
second hypervisor; and
identifying in a data packet a virtual IP address associated
with a virtual tunnel gateway, wherein the virtual tunnel
gateway is associated with the switch; and

determining an output port for an inner packet in the data
packet based on a destination address of the inner
packet.

13. The method of claim 12, further comprising identifying
a hypervisor controlling a virtual machine, wherein the vir-
tual machine initiates the overlay tunnel by encapsulating the
inner packet using the virtual IP address.

14. The method of claim 12, further comprising identifying
in the data packet a virtual media access control (MAC)
address corresponding to the virtual IP address.
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15. The method of claim 12, further comprising generating
a configuration message comprising the virtual IP address as
a tunnel gateway address in response to detecting a hypervi-
SOf.

16. The method of claim 15, wherein the virtual IP address
in the configuration message corresponds to a default gate-
way router.

17. The method of claim 12, wherein the virtual IP address
is further associated with a remote switch, wherein the remote
switch operates as a tunnel gateway and is associated with the
virtual tunnel gateway.

18. The method of claim 12, further comprising:

encapsulating the data packet in an encapsulation packet;

and

identifying a virtual switch identifier as an ingress switch

identifier of the encapsulation packet; and

wherein the virtual switch identifier is associated with the

switch.
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19. The method of claim 12, further comprising maintain-
ing a membership in a network of interconnected switches.

20. The method of claim 19, further comprising:

identifying the inner packet to be a broadcast, unknown

unicast, or multicast packet; and

selecting a multicast tree in the network to distribute the

inner packet based on one or more of: multicast group
membership, virtual local area network (VLAN) mem-
bership, and network load.

21. The method of claim 19, wherein the virtual tunnel
gateway appears as a member switch of the network.

22. The method of claim 12, further comprising construct-
ing an Address Resolution Protocol (ARP) response message
comprising a virtual MAC address associated with the switch
in response to an ARP query message for the virtual IP
address.



